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This article proposes a numerical solution of the diffusion equation for solids obtained by revolution of
arbitrarily shaped plane surfaces for the description of heat transfer or mass transport. The diffusion
equation is discretized and solved using the finite volume method with fully implicit formulation, gen-
eralized coordinates and boundary condition of the first kind. The proposed solution exploits symmetry
conditions, which reduces the problem to the two-dimensional case, and it diminishes significantly the
computational effort in comparison with the traditional method using three-dimensional grids. Our solu-
tion is applied to – and compared with – the drying kinetics of solids with known analytical solutions of
the diffusion equation. Both solutions agree well in all analyzed cases. Furthermore, our solution is used
to describe the moisture distribution inside solids.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The knowledge of the mechanism of water transfer from the
interior of a humid body to an external medium at a given temper-
ature is important for the drying process of a product, because it
not only enables to minimize losses of the product, but also the en-
ergy consumed during the drying. Naturally, a mathematical model
which describes the mechanism of the drying process must be
adopted for its theoretical study. Various theories and consequent
mathematical models are reported in the literature. One of these
assumes, simplifying, that the water transfer from the interior of
the product to its surface occurs by liquid diffusion when dried
with hot air. Consequently, the appropriate mathematical model
to describe the process involves the diffusion equation.

The diffusion equation has an analytical solution for some sim-
ple geometries, as for an infinite slab, infinite cylinder, and a
sphere, among others. It is normally supposed that these solids
have constant thermo-physical properties as, for example, in Ref.
[1]. Analytical and numerical solutions for diffusion of water are
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also reported for parallelepipeds, prolated and oblated spheroids
[2–6]. However, only few works are available for arbitrary geome-
tries, particularly using the finite volume method and generalized
coordinates. Thus, the study here presented is motivated by the
lack of papers involving problems of transient water diffusion in
solids of arbitrary geometry, which is necessary for a rigorous
description of the drying process of a solid of any shape. In this
case, the commonly used Cartesian, cylindrical or spherical coordi-
nates are not appropriate. Even some more flexible coordinate sys-
tems, as defined for prolate [2] and oblate [6] spheroids, or still
other ellipsoidal systems [7,8], are limited to only some specific
geometric shapes, normally involving orthogonal grids.

In this context, our study proposes a numerical solution of the
diffusion equation for solids which can be obtained by revolution
of arbitrary two-dimensional plane surfaces about a fixed axis in
the same plane, thereby exploring symmetry conditions. The pro-
posed numerical solution is for boundary condition of the first
kind, using the finite volume method and generalized coordi-
nates, and it can be applied to two-dimensional structured grids,
which may be orthogonal or not. Such a study should preview
variable physical parameters and enable a description of drying
bodies obtained by revolution described above. Our study may
be justified by a significant reduction of computational effort in
relation to traditional numerical solutions by three-dimensional
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Nomenclature

D mass diffusivity (m2 s�1)
J Jacobian of the transformation (m�3)
L half height of a finite cylinder (m)
M moisture content (kg/kg), dry basis
M� dimensionless moisture content
r distance of a nodal point from the axis of revolution (m)
R radius of a sphere or a finite cylinder (m)
S source term (dimension depends on the process under

study)
t time in the physical domain

Greek symbols
CU transport coefficient (dimension depends on the process

under study)
U dependent variable of the diffusion equation (dimension

depends on the process under study)
k transport coefficient (dimension depends on the process

under study)
n, g, c axes of the system of generalized coordinates (dimen-

sionless)
s time in the transformed domain
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grids, as in Ref. [9], assuming constant thermo-physical parame-
ters. Besides the presented justification, there is a special interest
in this type of solids originating from the great number of indus-
trialized products of this shape and the frequency with which
they are found in nature. Although our study was initially moti-
vated by drying problems, it should be noted that the method
can be applied to any physical property which can be described
by a diffusion equation.
Fig. 1. Cartesian and generalized coordinate systems.
2. Mathematical modelling

The mathematical modelling for the solution of the diffusion
equation in the case of drying is based on the following
idealizations:

� the solid is considered homogeneous and isotropic;
� the distribution of the moisture content is initially uniform and

remains symmetric in relation to the axis of rotation;
� the only mechanism of water transport inside the solid is liquid

diffusion;
� the volume of the solid is not affected by the diffusion process.

2.1. Diffusion equation

The diffusion equation in Cartesian coordinates is given by [9–
11]

@ðkUÞ
@t

¼ @

@x
CU @U

@x

� �
þ @

@y
CU @U

@y

� �
þ @
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CU @U

@z

� �
þ S; ð1Þ

where t is the time, x, y and z are the Cartesian coordinates of posi-
tion, k and CU are transport coefficients, S is a source term and U is
the dependent variable to be determined. Eq. (1) is frequently
named diffusion equation of the physical domain, in contrast to
the transformed domain.

In general, Cartesian coordinates are not appropriate to solve
diffusive problems for solids of arbitrary shape. Thus, a coordinate
system whose axes coincide with the borders of the control volume
of the studied solid will be used. This means that the new axes, de-
noted by n, g and c, define a curvilinear, non-orthogonal coordinate
system, as shown in Fig. 1.

The curvilinear coordinates n, g and c can be expressed as func-
tions of x, y and z through transformations of the type [10,11]:

n ¼ nðx; y; zÞ; g ¼ gðx; y; zÞ and C ¼ Cðx; y; zÞ: ð2Þ

Then, the diffusion equation can be written in the new coordinate
system as [9,11]:
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where s is the time, and J is the Jacobian of the transformation to be
defined below, together with the coefficients aij for the type of solid
under study. Eq. (3), written in generalized coordinates n, g and c, is
frequently called diffusion equation in the transformed domain.
Note that the structured grid to be used in Eq. (3) is fixed in time,
i.e., the volume of the solid is constant.

2.2. Diffusion equation for solids of revolution

The solution proposed in this paper for solids of revolution is
similar to that for diffusion in long solids obtained by extrusion
(see, for example, Ref. [11]). But a solution via the finite volume
method for non-orthogonal two-dimensional structured grids in
an arbitrary domain and generalized coordinates was not found
in the consulted literature. The basic idea departs from a control
volume generated by an elementary cell of a two-dimensional
structured grid in the (x, y)-plane through rotation by an angle h
about y, as sketched in Fig. 2. Since a symmetric diffusion in rela-
tion to the y-axis is assumed, there is no flux in the direction of c
perpendicular to the generating cell of the control volume.

The derivatives of x and y with respect to c, and the derivatives
of z with respect to n and g, are zero for the control volume shown
in Fig. 2. In this case, the generating cell is contained in the vertical
(n, g)-plane, while c and z lie in a horizontal plane. Thus, the
Jacobian of the transformation is given by the determinant



Fig. 3. Regions with nine types of control volumes in the transformed domain for a
structured grid: internal volumes, and boundary volumes in the north (N), in the
south (S), in the east (E) and in the west (W).

(a) (b)
Fig. 2. (a) Control volume with a nodal point P obtained by rotation about y of an
elementary cell of a two-dimensional structured grid in a vertical plane. The faces
‘‘f” and ‘‘b” refer to front and back. (b) System of generalized coordinates defined by
the axes n, g and c along the borders of the control volume.
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¼

xn xg 0
yn yg 0
0 0 zc

�������
�������; ð4Þ
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1
J
¼ zc

xn xg

yn yg

�����
�����; ð5Þ

where the symbol gm means the partial derivative of g with respect
to m. Therefore, for a solid of revolution, the Jaobian is given by the
2 � 2 determinant of Eq. (5), instead of the 3 � 3 determinant of Eq.
(4).

Since there is no flux in the direction of c for the solid of revo-
lution under study, the third term of the right hand side of Eq. (3)
becomes zero, because a derivative with respect to c is involved. By
hypothesis, the derivative of U with respect to c is also zero. In this
case, Eq. (3) turns into
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and the 3D diffusion problem (n, g and c) is transformed into a 2D
one (n and g). Thus, besides the knowledge of the Jacobian deter-
mined by Eq. (5), the following expressions must be known for
the numeric solution of Eq. (6):

a11 ¼ z2
cðx2

g þ y2
gÞ; a12 ¼ a21 ¼ �z2

cðxnxg þ ynygÞ;
a22 ¼ z2

cðx2
n þ y2

n Þ: ð7a-cÞ

Obviously, the terms a13, a31, a23, a32 and a33, which are related to
the c -axis, need not be calculated for a solid of revolution. More-
over, a parallelepiped (3D-case), discretized in the transformed
domain, transforms into a rectangle (2D-case) as will be shown
below using the finite volume method.

The principal difference between a 2D solution for solids of
revolution, as proposed in this article, and a typical 2D solution
for solids obtained by extrusion of plane areas along the z-axis, is
the form how zc is calculated. In the latter case, zc = 1 because
z = c, whereas for the proposed solution for solids of revolution zc
is obtained as will be defined by Eq. (10).
2.3. Numerical solution: discretization of the diffusion equation

With fully implicit formulation, integration of Eq. (6) about
space and time for a solid of revolution gives for a control volume
with elementary cell in the (n, g)-plane and unit length in c for a
time interval Ds:
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where the terms without superscript are evaluated at time s + Ds,
while the terms with superscript zero are evaluated at a previous
time s. The subscripts ‘‘e”, ‘‘w”, ‘‘n” and ‘‘s” mean the east, west,
north and south borders, respectively, of an elementary cell of a
control volume of unit length, while P is the nodal point of this
volume. All the elements described above are shown in Fig. 2.

To complete the discretization of Eq. (8), it should be noted that
for a structured two-dimensional grid created in the generating
plane surface of the solid of revolution, there are nine types of
different control volumes in the transformed domain, as shown
in Fig. 3.

Obviously, each type of control volume shown in Fig. 3 gener-
ates a distinct algebraic equation originating from the discretiza-
tion of Eq. (8). As can be observed in Eq. (8), the term J must be
calculated at the nodal point P of each control volume and also,
as well as a11, a12 or a21 and a22, at the east, west, north and south
borders of the elementary cell which defines that volume. As the
expressions for J, a11, a12 or a21 and a22 depend on the derivatives
xn, yn, xg, yg and zc, the knowledge of the expressions for these
derivatives for the solid of revolution is necessary.

2.4. Internal control volume

The derivatives of the coordinates x and y with respect to n and
g for the nodal point of an internal control volume of a grid can be
obtained from the fragment of the grid of the transformed domain
shown in Fig. 4.

As can be deduced from Fig. 4, the metric for the nodal point P
relative to the transformations of the domains are given by the
following expressions:



Fig. 4. Internal control volume P and its neighbours in the north (N), south (S), east
(E), west (W), north-east (NE), north-west (NW), south-east (SE) and south-west
(SW).

W.P. da Silva et al. / International Journal of Heat and Mass Transfer 52 (2009) 4976–4985 4979
xP
n ¼

xe � xw

Dn
¼ xi;jþ1 þ xiþ1;jþ1

2
� xi;j þ xiþ1;j

2

h i
� 1
Dn

xP
g ¼

xn � xs

Dg
¼ xiþ1;j þ xiþ1;jþ1

2
� xi;j þ xi;jþ1

2

h i
� 1
Dg

;

yP
n ¼

ye � yw

Dn
¼

yi;jþ1 þ yiþ1;jþ1

2
�

yi;j þ yiþ1;j

2

� �
� 1
Dn

;

yP
g ¼

yn � ys

Dg
¼

yiþ1;j þ yiþ1;jþ1

2
�

yi;j þ yi;jþ1

2

� �
� 1
Dg

;

ð9a-dÞ

where the indices i and j determine the positions of the g and n lines
which delimit the elementary cell of the generating two-dimen-
sional grid of the solid of revolution. Further, the derivative of z with
respect to c is given by:

zP
c ¼

zP
f � zP

b

Dc
¼ hr

1
Dc

; ð10Þ

where the indices ‘‘f” and ‘‘b” refer to front and back, respectively, as
can be observed in Fig. 2. On the other hand, r is the distance from
the axis of revolution to the nodal point, calculated by

r ¼ xi;j þ xi;jþ1 þ xiþ1;jþ1 þ xiþ1;j

4
: ð11Þ

For solids of revolution as considered in this article, the metric zP
c ,

given by Eq. (10), is determined by the value of r (distance from P
to the y-axis, see Fig. 2). On the other hand, r is localized in the ver-
tical plane (n, g) or (x, y), and its value only depends on the x coor-
dinate as is evident from Eq. (11).

For the east border of an internal control volume, the deriva-
tives of the coordinates x and y with respect to n and g are given
by the equations:
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whereas the derivative of z with respect to c is also given by Eq.
(10), but r becomes now:
r ¼ xi;jþ1 þ xiþ1;jþ1

2
: ð13Þ

With similar expressions to those obtained above, all necessary
terms for a complete definition of a11, a12 or a21, a22 and J for the
north, south and west borders of an internal control volume can
be determined.

For an internal control volume, the derivatives of U in Eq. (8)
can be approximated as:
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So, finally, the discretization of Eq. (8) for an internal control vol-
ume results in the following algebraic equation:

ApUP ¼ AwUW þ AeUE þ AsUS þ AnUN þ AswUSW þ AseUSE

þ AnwUNW þ AneUNE þ B; ð15Þ

where:
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Commonly, the n and g lines of a grid in the transformed domain are
identified by consecutive integers, and therefore as well Dn as Dg
are equal to 1 in Eq. (16) and in the other equations in which they
appear.

2.5. Dirichlet boundary condition

With an analogue procedure as presented for the internal con-
trol volumes of a grid, the algebraic equations can be determined
for every type of control volume identified in Fig. 3. For example,
Fig. 5 shows control volumes at the east boundary of a fragment
of a two-dimensional grid in the transformed domain.

For a nodal point P in the control volume at the east boundary
shown in Fig. 5, and assuming boundary condition of the first kind,
one obtains:

ApUP ¼ AwUW þ AsUS þ AnUN þ AswUSW þ AnwUNW þ B; ð17Þ

where



Fig. 5. Control volume P at the east boundary and its neighbours.
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and Ue, Une and Use are the values of U at the east, north-east and
south-east boundaries, respectively, as shown in Fig. 5.

It should be noted that for the case of a control volume at the
east boundary, the derivatives for the determination of a11, a12

or a21, a22 and J are the same as used for an internal control vol-
ume, with the exception of xe

n and ye
n. These last two derivatives

can be approximated by xP
n and yP

n , respectively. Similar approxima-
tions can be made for each of the other borders of the cell: north,
south and west.

2.6. Symmetry

To exploit possible simplifications caused by symmetries, as
presented in this article, boundary condition without flux may be
useful. If such a boundary condition is applied to the east bound-
ary, for example, the discretized diffusion equation for a control
volume becomes:
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Similar equations as above can be written for the other types of con-
trol volumes, and a system of equations in U is obtained which can
be solved, for example, by the method of Gauss–Seidel.

Note that the proposed solution for solids of revolution may
also be used for typical two-dimensional diffusion (long solids ob-
tained by extrusion) imposing zc = 1, instead of Eq. (10). Finally
should be mentioned that the here presented numerical solution
presupposes the general case involving a non-orthogonal grid,
and therefore the so called cross-terms (AswUSW, AseUSE, AnwUNW

and AneUNE) appear in the calculations, which would not happen
for an orthogonal grid.

2.7. Mean value of U

If the values of U are known for each control volume at time t,
its mean value can be determined by the equation [12,14]

U ¼ 1
V

Z
UdV ð21Þ

or, with the appropriate discretization [14]

U ¼ 1P 1
JP

X
UP

1
JP
; ð22Þ

where the summation must be applied over all control volumes. The
term 1/JP corresponds to the volume of the control volume contain-
ing the nodal point P. Hence, the mean value of U is determined by
a weighted mean in which the volume of each control volume is
used for the weighting.

2.8. Variable coefficient CU

In the case of a variable transport coefficient CU, a harmonic
mean will be used for its estimation at the borders of each control
volume [13,14]. For example, for the border ‘‘e” between a control
volume with a nodal point P and its east neighbour with nodal
point E (see Fig. 4), one obtains:

CU
e ¼

CU
P CU

E

fdC
U
E þ ð1� fdÞCU

P

; ð23Þ

where

fd ¼
dP

dP þ dE
; ð24Þ

and dP and dE are the distances from the border ‘‘e” to the nodal
points P and E, respectively. At the nodal points, CU must be calcu-
lated by an appropriate function which relates CU with the value of
U at each node.



Fig. 6. Initial 6 � 6 grid for a quarter of the circle (r = 3.94 � 10�3 m), highlighting
the nodes of the generating cells of the control volumes and the boundaries.

Fig. 7. Dimensionless average moisture content of cowpea as a function of time: (a)
Analytical solution; (b) Proposed numerical solution; (c) Superposition of the two
solutions.
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So, for each time step, we have a system of equations which will
be solved by Gauss–Seidel, with a tolerance of 10�8.

The proposed numerical solution can be used to study the con-
duction of heat if we impose: U = T (temperature), CU = k (conduc-
tivity) and k = qcp (q is the density and cp is the specific heat). On
the other hand, setting U = M (moisture content), CU = D (water
diffusivity), k ¼ 1, and S = 0, the proposed numerical solution can
be used to study the water diffusion in solids.

The software employed in this work (including user interface)
was developed in Compaq Visual Fortran Professional Edition V.
6.6.0 (Fortran 95) using a programming language option called
QuickWin Application, under Windows XP platform.

3. Results and discussion

Many tests have been made to evaluate the numerical solution
proposed in this paper, and the results obtained are available in
Ref. [14]. Out of these, three simulations concerning drying of por-
ous solids will be presented in the following, as examples which
serve to validate the proposed solution. For the case of diffusion
of water in porous media, the parameter k of Eq. (6) should be
set equal to 1, CU represents the effective mass diffusivity D, and
the dependent variable U is the moisture content M.

3.1. Example 1: sphere with constant diffusivity

The first example describes thin-layer drying of cowpea using
air at 40 �C, and all data used in this example were extracted from
Ref. [15]. This example, besides to enable a description of the dry-
ing kinetic of cowpea by the proposed numerical solution, also al-
lows validating the solution if non-orthogonal grids are used, and
therefore cross-terms make part of the solution. With regard to
the data, the grains are idealized as spheres with a radius of
3.94 � 10�3 m. For the proposed numerical solution, the sphere is
obtained by revolution of a quarter of a circle about the y-axis, as
shown in Fig. 6. The grid was generated by the software 2D Grid
Generation1.

The initial and boundary conditions, as well as the properties of
the solid, are defined as follows:
1 http://zeus.df.ufcg.edu.br/labfit/gg.htm, accessed on April 2008.
� initial condition:

uniform initial moisture content in the domain: Mi = 0.59 kg/kg
(db, dry basis);

� boundary conditions:

M = Meq = 0.088 kg/kg, db at the curved boundary of Fig. 6
(north and east);
�D @M

@n ¼ 0; at west and south (no flux of water), being n the
normal direction at the boundaries.
Fig. 8. Residual error as a function of time.

http://zeus.df.ufcg.edu.br/labfit/gg.htm


Fig. 9. Contour plots showing the moisture content of the generating area of the cowpea grain at t = : (a) 50 min; (b) 200 min; (c) 400 min.

Fig. 10. Grid of the generating rectangle for the cylindrical model of rice grains. The
value of 3.50 mm corresponds to the half height of the cylinder and the value of
1.17 mm corresponds to the radius.

Fig. 11. Drying kinetic of rice. Comparison of the analytical and numerical solution.

Fig. 12. Residual error as a function of drying time.
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� properties of the medium:

constant effective mass diffusivity D = 7.13 � 10�11 m2 s�1

(D = 4.28 � 10�9 m2 min�1) and k = 1.
For the problem under investigation, without source term and

with prescribed boundary condition, the analytical solution for
the average moisture content M is given by [1]

M� ¼ M �Meq

Mi �Meq
¼ 6

p2

X1
n¼1

1
n2 exp �n2 p2

R2 Dt
� �

; ð25Þ

where Meq is the average value of M at equilibrium, and M� is the
dimensionless moisture content.

The time of drying was 720 min, studies of time and grid refine-
ment indicated an interval of Dt = 30 s and a grid with 48 � 48
generating cells of the control volumes, considering a tolerance
of 1 � 10�3 of the dimensionless moisture content.

Fig. 7a shows the dimensionless average moisture content as a
function of time obtained from the analytical solution using 40
terms of the series of Eq. (25). Fig. 7b shows the result of the pro-
posed numerical solution, and Fig. 7c the superposition of both.

Fig. 7 indicates complete agreement of the analytical solution
obtained from Eq. (25) with the numerical solution proposed in
this paper for transient diffusion in a sphere. To get an idea of
the discrepancy between the two solutions, we consider the resid-
ual error defined as



Fig. 13. Contour plots of the drying process at the instants: 1.5; 2.0; 2.5 and 3.0 h.

2 http://zeus.df.ufcg.edu.br/labfit/index_xyExtract.htm, accessed on April 2008.
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Error ¼ M�
analytical �M�

numerical: ð26Þ

Fig. 8 shows the residual error as a function of time.
We conclude from Fig. 8 that the numerical solution agrees with

the analytical solution within the tolerance of 1 � 10�3, which had
been imposed for the studies of time and grid refinement. Note fur-
ther that the calculation of the analytical solution included only
the first 40 terms of the series.

The proposed numerical solution has the advantage to be more
general than the analytical one, because it can be applied to any
solid obtained by revolution of an arbitrary plane surface. More-
over, the numerical solution allows simulations with variable pro-
cess parameters. Finally, the evolution of the spatial distribution of
the moisture content with time can be visualized, as shown in
Fig. 9 for the sphere under investigation.

As can be observed in Fig. 9, the moisture content decreases
more rapidly in the region near the surface than in the interior at
the beginning of the drying process. This means that greater mois-
ture content gradients are present in the region near the surface,
and therefore effects due to internal tensions may there occur
during the drying process.

3.2. Example 2: finite cylinder with constant diffusivity

This example is extracted from Ref. [12], and describes thin-
layer drying of rice by the model of liquid diffusion, starting from
experimental data. The rice (each grain is considered as a finite cyl-
inder) was dried by air at 60 �C flowing with a velocity of 1.5 m s�1.
The drying kinetic was described by the analytical solution of a
finite cylinder. We will compare that solution with the numerical
solution proposed in this paper.

For the numerical simulation, the total time of the drying
process was divided into 1000 equal intervals. A 20 � 40 grid
was created in a rectangle with dimensions of 1.17 � 3.50 mm
which is the generating area of the cylinder representing the rice
grain, as shown in Fig. 10. The boundary conditions, exploiting
the symmetries of the problem, are also shown.

Besides describing the drying kinetic of rice, this example
allows to validate the proposed numerical solution when orthogo-
nal grids are used, what implies that the cross-terms are equal to
zero. Note that in this case the transformation of the 3D-problem
into a 2D-problem by rotation of the grid about an axis could be
developed using Cartesian coordinates.
The analytical solution of the problem is given by [12,16]

M� ¼ M �Meq

Mi �Meq
¼
X1
n¼1

X1
m¼1

8
a2

nb
2
m

exp � a2
n þ b2

m
R2

L2

 !
Dt

R2

" #
; ð27Þ

where an are the roots of the Bessel functions of the first kind and
order zero, bm = (2m � 1)p/2, L is the half height of the finite cylin-
der, and R is its radius. The result of the analytical solution for a dif-
fusivity D = 1.3224 � 10�11 m2 s�1 (D = 4.7608 � 10�8 m2 h�1), and
initially uniform moisture content (M�

i ¼ 1), calculated from Eq.
(25) for n = 30 and m = 1000, is shown in Fig. 11. The numerical
solution proposed in this paper is also shown for comparison.

Fig. 12 shows the residual error as a function of time.
The numerical solution permits to preview the distribution of

the moisture content inside the grains at selected times, as shown
in Fig. 13 by contour plots.

3.3. Example 3: finite cylinder with variable diffusivity

To get an idea of how well the liquid-diffusion model with con-
stant diffusivity matches experimental data for the drying kinetic
of rice, the results of the foregoing example are plotted together
with experimental data in Fig. 14. The data referring to 60 �C have
been extracted from Ref. [12] and digitalized using the software
xyExtract Graph digitizer2. The figure contains the statistical fitting
indicators chi-squared (v2) and the determination coefficient (R2)
[17,18], determined by LAB Fit Curve Fitting Software [19].

As can be seen from Fig. 14, the liquid-diffusion model with
boundary condition of the first kind and constant diffusivity does
not adequately describe the initial instants of the drying. At the
beginning of the drying process the diffusivity should be somewhat
less than 1.3224 � 10�11 m2 s�1 (4.7608 � 10�8 m2 h�1), whereas
its value should be slightly higher at the end of the drying. Thus,
to relate the diffusivity with the local moisture content, simula-
tions were carried out with various decreasing functions and, ana-
lysing the statistical indicators of all realized fits, we propose that
the dependence of the diffusivity on local moisture content may be
described by an expression of the form

D ¼ B

coshðAM�2Þ
: ð28Þ

http://zeus.df.ufcg.edu.br/labfit/index_xyExtract.htm


Fig. 14. Drying kinetic of rice at 60 �C assuming constant diffusivity.

Fig. 15. Drying kinetic of rice assuming variable diffusivity given by Eq. (28).

Fig. 16. Diffusivity as a function of the local moisture content given by Eq. (28).
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The values of A = 3.6523 and B = 1.9421 � 10�11 m2 s�1 (B =
6.9917 � 10�8 m2 h�1) were calculated by the method of inverse
optimization [20]. In the inverse method, values are assigned to
the parameters of interest, the equation which describes the system
is solved, and the results are compared to the experimental data rel-
ative to the system. After comparison, new values for the parame-
ters are established followed by a new solution and the process
continues until the results satisfactorily agree with the experimen-
tal data. This method has been used to obtain the drying kinetic of
Fig. 15.

Comparison of the statistical indicators of Figs. 14 and 15 shows
that the numerical simulation of the drying kinetic of rice with
variable diffusivity matches the experimental data better than a
simulation with constant diffusivity. Fig. 16 shows the decreasing
diffusivity as a function of the local moisture content.

In examples 1, 2 and 3, we use in our article the same boundary
condition as the original papers, from which the data were
obtained. Naturally, if the boundary condition of the first kind is
not completely acceptable to describe a drying process, the
obtained diffusivity only should be interpreted as an expression
that fits the numerical simulation to the experimental data. On
the other hand should be observed that for the convective bound-
ary condition, with increasing moisture content, increasing diffu-
sivities are expected [21–24], and not the opposite, as obtained
in this article for a boundary condition of first kind.

With regard to the validation of the proposed method for solids
of revolution via the finite volume method and generalized coordi-
nates, it can be verified by example 1 that the numerical solution
produces correct results for non-orthogonal grids. Example 2
shows that the proposed numerical solution also produces correct
results for orthogonal grids. Finally, as example 3 reveals, the pro-
posed solution is also useful for the solution of diffusive problems
with a variable diffusivity.

4. Conclusions

The numerical solution for the diffusion equation in solids of
revolution, subject to boundary condition of the first kind, pro-
posed in this work, produces compatible results with the results
expected for all tests carried out. This means that diffusion in such
solids can be studied starting from two-dimensional grids, which
simplifies the numerical solution of this type of problems and
reduces the computational effort in comparison with typical
three-dimensional solutions. In addition, differently from the ana-
lytical solutions presented, the numerical solution makes available
the spatial distribution of the moisture content at any instant.
Thus, it is possible to analyze gradients of moisture content and
foresee possible problems regarding the drying process at a given
temperature.

The numerical solution proposed in this article can also be used
for a simulation of diffusion in long solids obtained by extrusion,
setting zc = 1. In this sense, the proposed solution represents a gen-
eralization of the typical two-dimensional solution available in the
literature using the finite volume method.

The proposed solution permits to establish an expression for the
diffusivity as a function of local moisture content, which is an
advantage in relation to other solutions assuming constant
diffusivity.

The numerical solution proposed in this article can not only be
applied to mass transfer, but also to other diffusive problems. For
example, in the case of heat conduction, the parameter k must be
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substituted by qcp, where q is the density of the solid and cp its
specific heat at constant pressure, while CU must be substituted
by the thermal conductivity k.
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